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Apartado Postal 20-726, México DF 01000, Mexico
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Abstract

In this paper we study point transformed electromagnetic invisibility cloaks
in transformation media that are obtained by transformation from general
anisotropic media. We assume that there are several point transformed
electromagnetic cloaks located in different points in space. Our results apply
in particular to the first-order invisibility cloaks introduced by Pendry et al and
to the high-order invisibility cloaks introduced by Hendi et al and by Cai
et al. We identify the appropriate cloaking boundary conditions that the
solutions of Maxwell equations have to satisfy at the outside, ∂K+, and at
the inside, ∂K−, of the boundary of the cloaked object K in the case where the
permittivity and the permeability are bounded below and above in K. Namely,
that the tangential components of the electric and the magnetic fields have to
vanish at ∂K+—which is always true—and that the normal components of the
curl of the electric and the magnetic fields have to vanish at ∂K−. These results
are proven requiring that energy be conserved. In the case of one spherical cloak
with a spherically stratified K and a radial current at ∂K we verify by an explicit
calculation that our cloaking boundary conditions are satisfied and that cloaking
of active devices holds, even if the current is at the boundary of the cloaked
object. As we prove our results for media that are obtained by transformation
from general anisotropic media, our results apply to the cloaking of objects
with passive and active devices contained in general anisotropic media, in
particular to objects with passive and active devices contained inside general
crystals. Our results suggest a method to enhance cloaking in the approximate
transformation media that are used in practice. Namely, to coat the boundary
of the cloaked object (the inner boundary of the cloak) with a material that
imposes the boundary conditions above. As these boundary conditions have to
be satisfied for exact transformation media, adding a lining that enforces them

* Research partially supported by Conacyt under project P42553F.
1 Fellow Sistema Nacional de Investigadores.

1751-8113/08/415401+17$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/41/415401
mailto:weder@servidor.unam.mx
http://stacks.iop.org/JPhysA/41/415401


J. Phys. A: Math. Theor. 41 (2008) 415401 R Weder

in the case of approximate transformation media will improve the performance
of approximate cloaks.

PACS numbers: 41.20.Jb, 02.30.Tb, 02.30.Zz, 02.60.Lj
Mathematics Subject Classification: 35L45, 35L50, 35L80, 35P25, 35Q60,
78A25, 78A45

1. Introduction

In this paper we study point transformed electromagnetic invisibility cloaks in transformation
media that are obtained by transformation from general anisotropic media. We assume that
there are several cloaks located in different points in space. Our results apply in particular
to the first-order invisibility cloaks introduced by [1] and to the high-order invisibility cloaks
introduced by [2, 3].

In [4, 5] we gave a rigorous proof—based on energy conservation—of cloaking of passive
and active devices for our general class of invisibility cloaks. The cloaked object, K, completely
decouples from the exterior. Actually, the cloaking outside is independent of what is inside
K. The electromagnetic waves inside K cannot leave K and vice versa, the electromagnetic
waves outside cannot go inside. Furthermore, we identified the appropriate cloaking boundary
conditions when cloaking is formulated as a boundary value problem. We proved that the
tangential components of the electric and the magnetic fields have to vanish at the outside
of the boundary of the cloaked object, ∂K+. This boundary condition is self-adjoint in our
case because the permittivity and the permeability are degenerate at ∂K+. We also proved
that the boundary condition at the inside of the boundary of the cloaked object, ∂K−, can
be any self-adjoint boundary condition for the Maxwell generator in K. This is true in the
general case where the permittivity and the permeability are allowed to be degenerate at ∂K−.
In this general situation the particular boundary condition that nature will take on ∂K− will
depend on the behavior of the permittivity and the permeability near ∂K−. We proved our
results both in the time and in the frequency domains, and as we consider media obtained
by transformation from general anisotropic media, our results apply, in particular, to objects
inside general crystals.

In this paper, we address the problem of determining the cloaking boundary conditions
at ∂K− in the case where the permittivity and the permeability inside K are bounded and have
a positive lower bound. This corresponds to the situation where we have a standard object
K—that could be anisotropic and inhomogeneous, but whose permittivity and permeability are
neither singular nor degenerate—that is coated by a transformation medium that is degenerate
at ∂K+. We also allow for active devices in K. This is perhaps the more important case in
the applications. We prove that in this case the cloaking boundary conditions at ∂K− are that
the normal components of the curl of the electric and the magnetic fields vanish.

Since we have identified the cloaking boundary conditions at ∂K± we have now a complete
formulation of cloaking as a boundary value problem in this important case. For the exact
transformation media that we consider in this paper these boundary conditions are satisfied
because they follow from energy conservation and there is no need to add any lining to
impose on them. In other words, they are the conditions taken by nature, as they are imposed
by energy conservation. However, our results suggest a method to enhance cloaking in the
approximate transformation media that are used in practice. Namely, to coat the boundary of
the cloaked object (the inner boundary of the cloak) by a material that imposes the boundary
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conditions above. As these boundary conditions have to be satisfied for exact transformation
media, adding a lining that enforces them in the case of approximate transformation media
will improve the performance of approximate cloaks.

It is, of course, a well-known fact in electromagnetic theory—and in wave propagation
in general—that in any interphase between two different media there has to be a boundary
condition. This obviously applies to the interphase between the cloaked object and the coating
metamaterial, i.e., ∂K . So, the real question is not if there has to be boundary conditions
at ∂K±, but rather what are the appropriate boundary conditions. We address this question
in this paper as well as in [4, 5]. The reason why this is a delicate problem that requires a
careful analysis is that for point transformed electromagnetic cloaks the permittivity and the
permeability are degenerate at ∂K and in consequence the standard rules that are used in the
non-degenerate case do not apply. In fact, the solutions to Maxwell equations are, in general,
discontinuous at ∂K .

The interesting paper [6] considers point and line transformed electromagnetic cloaks
under general coordinate transformations. Among other problems, they compute the fields
outside the cloaked object from the fields in the original electromagnetic space, using
the transformation formulae between them, what avoids doing tedious calculations in the
transformed space. This method was previously used in [4, 5] for spherical and cylindrical
cloaks. In this way, it is proven in [6] that for general point transformed cloaks the tangential
components of the electric and the magnetic fields vanish at the outside of the boundary of
the cloaked object and also that for general line transformed cloaks the tangential components
of the electric and magnetic fields that are orthogonal to the axis of the cloak vanish at the
outside of the boundary of the cloaked object. This generalizes the results previously proved
in [4, 5] in the case of spherical and cylindrical cloaks, using the same method.

The paper [7] considers cloaking in terms of the Cauchy data, in the context of the
Dirichlet to Neumann operator. Among other problems, they study cloaking of passive
and active devices for one spherical electromagnetic cloak. They postulate a class of weak
solutions in distribution sense across ∂K (see definition 4 of [7]). They study the case when the
permittivity and permeability are bounded below and above inside K (what they call the single
coating) in theorem 5, where, among other results, they prove that the tangential components
of the electric and magnetic fields of their solutions have to vanish at ∂K−. They conclude that
their solutions do not exists for generic currents inside K, and that cloaking holds for passive
devices but that it fails for active devices with generic currents inside K. To deal with this
issue they propose to add a perfect electric conducting lining to K—what makes it to appear
as passive—or to introduce a different construction that they call the double coating.

In this paper, as well as in [4, 5], we proceed in a completely different way. Instead
of postulating a priori a particular class of weak solutions in distributions sense across ∂K

we first characterize all possible ways to define solutions that are compatible with energy
conservation. They correspond to all self-adjoint extensions of the Maxwell generator. Note
that each self-adjoint extension can be understood in terms of boundary conditions at ∂K±.
We proved in [4, 5] that all self-adjoint extensions are the direct sum of some self-adjoint
extension inside K with a fixed self-adjoint extension outside K. This implies that the solutions
inside and outside of K are completely decoupled from each other and that, in general, they
are discontinuous at ∂K . Another consequence is that in the case where the permittivity and
the permeability are bounded below and above inside K weak solutions in distribution sense
across ∂K , and more generally solutions with transmission conditions that link the inside
and the outside of K, are not self-adjoint, i.e., they are not allowed by energy conservation.
Note that in this case, as the permittivity and the permeability are bounded below and above
inside K, requiring that the tangential components of both, the electric and the magnetic field
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vanish at ∂K− is not a self-adjoint boundary condition. We are only allowed to require that
one of them vanishes. However, requiring that both vanish at ∂K+ is a self-adjoint boundary
condition because the permittivity and the permeability are degenerate at ∂K+.

We also proved in [4, 5] that cloaking of passive and active devices always holds for
all possible ways to define solutions that satisfy energy conservation, i.e., with self-adjoint
boundary conditions.

There are many papers that discuss line transformed, or cylindrical, cloaks (see, for
example, [1, 3, 4, 6, 7, 10–12, 14, 16, 18–20]). In [18] boundary conditions are considered
to enhance cloaking for a cylindrical cloak. Note that the results for line transformed—or
cylindrical—cloaks are quite different from the ones for point transformed cloaks studied in
this paper.

As it is often the case in the papers on electromagnetic invisibility cloaks, we make
the assumption that the media are not dispersive. This is a widely used idealization. As is
well known, metamaterials are dispersive, and, furthermore, when the permittivity and the
permeability have eigenvalues less than one, dispersion comes into play in order that the group
velocity does not exceeds the speed of light. This idealization means that we have to take a
narrow enough range of frequencies in order that we can analyze the cloaking effect without
taking dispersion into account. In practice this means that cloaking will only be approximate.
Note, moreover, that the results in this paper, as well as in [4, 5], are proven for cloaks in exact
transformation media.

The paper is organized as follows. In section 2, we prove that our cloaking boundary
conditions at ∂K− are satisfied. In section 3, we illustrate our method by considering one
spherical cloak with an active device given by a radial electric current at the boundary of K.
The case of a magnetic current at the boundary of K follows in the same way. We assume
that K is isotropic and spherically stratified. We verify in this particular case, by an explicit
computation, that our cloaking boundary conditions are satisfied and that cloaking of active
devices holds, even if the current is at the boundary of the cloaked object, as we have proven
in section 2 in the general case where there is no explicit solution. We end the paper with
conclusions.

For other results on invisibility cloaks see [13, 15, 17] as well as the references quoted
there and in [4, 5].

2. The boundary conditions

Let us consider Maxwell equations in R3, in the time domain,

∇ × E = − ∂

∂t
B, ∇ × H = ∂

∂t
D, (2.1)

∇ · B = 0, ∇ · D = 0, (2.2)

and in the frequency domain, assuming a periodic time dependence of E, H given by eiωt , with
ω the frequency,

∇ × E = −iωB, ∇ × H = iωD, ω �= 0, (2.3)

∇ · B = 0, ∇ · D = 0, (2.4)

where we have suppressed the factor eiωt in both sides. In this paper we take the time factor
eiωt to use the convention of [8, 9]. Note that (2.4) follows from (2.3).

We briefly recall some notations and definitions from [5].
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Figure 1. One spherical cloak centered at zero.

Let us first consider the case where there is only one cloak located at x = 0 (see figure 1).
We designate the Cartesian coordinates of x by xλ, λ = 1, 2, 3. To define the transformation
media we introduce another copy of R3, denoted by R3

0. The points in R3
0 are denoted by y

with coordinates yλ, λ = 1, 2, 3. We designate x̂ := x/|x|, ŷ := y/|y|. Consider the following
transformation from R3

0

∖{0} to R3:

x = x(y) = f (y) := g(|y|)ŷ. (2.5)

In spherical coordinates this transformation changes the radial coordinate but leaves the
angular coordinates constant, i.e., |x| = g(|y|), x̂ = ŷ. Given 0 < a < b we wish that this
transformation sends the punctuated ball 0 < |y| � b onto the concentric shell a < |x| � b,
that it is the identity for |y| � b and that it is one to one. Then, we assume that g satisfies the
following conditions.

Definition 2.1. For any positive numbers a, b with 0 < a < b, we say the g is a cloaking
function in [0, b] if g(ρ) is twice continuously differentiable on [0, b], g(0) = a, g(b) = b,
and g′(ρ) := d

dρ
g(ρ) > 0, ρ ∈ [0, b].

We define

x = x(y) = f (y) := g(|y|)ŷ, for 0 < |y| � b,

x = x(y) := y, for |y| � b.
(2.6)

With these conditions (2.6) is a bijection from R3
0\{0} onto R3\Ba(0), where we denote

Br(x0) := {x ∈ R3 : |x − x0| � r}. (2.7)

Moreover, it blows up the point 0 onto the sphere |x| = a. It sends the punctuated ball
0 < |y| � b onto the concentric shell a < |x| � b and it is the identity for |y| � b. It is twice
continuously differentiable away from the sphere |y| = b, where it can have discontinuities in
the derivatives depending on the values of the derivatives of g at b.

In [3] the quadratic case

g(ρ) =
[
1 − a

b
+ p(ρ − b)

]
ρ + a
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Figure 2. Three spherical cloaks centered at c1, c2, c3.

with p ∈ R was discussed in connection with a cylindrical cloak in an approximate
transformation medium. In [1] the first-order case g(ρ) = b−a

b
ρ + a was considered. First-

order transformations were previously used in [21, 22] in the context of Calderón’s inverse
conductivity problem.

The closed ball K := {x ∈ R3 : |x| � a} is the region that we wish to conceal, and we
call it the cloaked object. The spherical shell a < |x| � b is the cloaking layer. The union
of the cloaked object and the cloaking layer is the spherical cloak. The domain |x| > b is the
exterior of the spherical cloak.

We now put a finite number of spherical cloaks in different points in space in such a
way that they do not intersect (see figure 2). Let us take as centers of the cloak points
cj ∈ R3, j = 1, 2, . . . , N , where N is the number of cloaks and cj �= cl , j �= l, 1 �
j, l � N . We take 0 < aj < bj , and cloaking functionsgj that satisfy the conditions of
definition 1 for aj , bj , j = 1, 2, 3, . . . , N , and we define the following transformation from
R3

0

∖{c1, c2, . . . , cN } to R3:

x = x(y) = f (y) := cj + gj (|y − cj |)ŷ − cj , y ∈ Bbj
(cj ), j = 1, 2, . . . , N,

x = x(y) = f (y) := y, y ∈ R3
0

∖ ∪N
j=1 Bbj

(cj ),
(2.8)

where Bbj
(cj ) are balls in R3

0.
The cloaked objects that we wish to conceal are given by

Kj := {x ∈ R3 : |x − cj | � aj }, j = 1, 2, . . . , N. (2.9)

The spherical shells aj < |x − cj | � bj , j = 1, 2, . . . , N are the cloaking layers. The
spherical cloaks are the balls Bbj

(cj ) in R3. We denote by K the union of all the cloaked
objects,

K := ∪N
j=1Kj . (2.10)
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The domain

R3∖ ∪N
j=1 Bbj

(cj ) (2.11)

is the exterior of all the spherical cloaks. We assume that the spherical cloaks are at a positive
distance of each other,

min distance
(
Bbj

(cj ), Bbl
(cl)

)
> 0, j �= l, j, l = 1, 2, . . . , N.

Denote

�0 := R3
0

∖{c1, c2, . . . , cN }, � := R3\K.

Then, (2.8) is a bijection from �0 onto �, and for j = 1, 2, . . . , N it blows up the point
cj onto the sphere |x − cj | = aj . It sends the punctuated ball 0 < |y − cj | � bj onto the
shell aj < |x − cj | � bj and it is the identity for y ∈ R3

0

∖
interior

(∪N
j=1 Bbj

(cj )
)
. It is

twice continuously differentiable away from the spheres |y − cj | = bj , where it can have
discontinuities in the derivatives depending on the values of the derivatives of gj at bj .

The elements of the Jacobian matrix are denoted by Aλ
λ′ ,

Aλ
λ′ := ∂xλ

∂yλ′ . (2.12)

Aλ
λ′ ∈ C1

(
�0

∖∪N
j=1 ∂Bbj

(cj )
)
, and that it can have discontinuities on ∪N

j=1∂Bbj
(cj ) depending

on the derivatives of gj at bj . We designate by Aλ′
λ the elements of the Jacobian of the inverse

bijection, y = y(x) = f −1(x),

Aλ′
λ := ∂yλ′

∂xλ
. (2.13)

Aλ′
λ ∈ C1

(
�

∖∪N
j=1 ∂Bbj

(cj )
)
, and it can have discontinuities on ∪N

j=1∂Bbj
(cj ) depending on

the derivatives of gj at bj .
It follows from (2.8) that the transformation matrix (2.12) is given by

Aλ
λ′ = gj (|y − cj |)

|y − cj | δλ
λ′ +

(
g′

j (|y − cj |)
|y − cj |2 − gj (|y − cj |)

|y − cj |3
)

(y − cj )
λ(y − cj )

λ′
,

y ∈ Bbj
(cj ), 1 � j � N,

Aλ
λ′ = δλ

λ′ , y ∈ R3
0

∖ ∪N
j=1 Bbj

(cj ).

(2.14)

The determinant is equal to

�(y) = g′
j (|y − cj |)

(
gj (|y − cj |)

|y − cj |
)2

, y ∈ Bbj
(cj ), 1 � j � N,

�(y) = 1, y ∈ R3
0

∖∪N
j=1 Bbj

(cj ).

(2.15)

Note that � diverges at the boundary of K.
We take here the material interpretation and we consider our transformation as a bijection

between two different spaces, �0 and �. However, our transformation can be considered,
as well, as a change of coordinates in �0. These two points of view are mathematically
equivalent. This means that under our transformation Maxwell equations in �0 and in � have
the same invariance that they have under change of coordinates in 3-space (see, for example,
[23]). Let us denote by E0, H0, B0, D0, ε

λν
0 , μλν

0 , respectively, the electric and magnetic fields,
the magnetic induction, the electric displacement, and the permittivity and permeability of
�0. ελν

0 , μλν
0 are positive Hermitian matrices that are constant in �0. The electric field is a

covariant vector that transforms as

Eλ(x) = Aλ′
λ (y)E0,λ′(y). (2.16)
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The magnetic field H is a covariant pseudo-vector, but as we only consider space
transformations with positive determinant, it also transforms as in (2.16). The magnetic
induction B and the electric displacement D are contravariant vector densities of weight one
that transform as

Bλ(x) = (�(y))−1 Aλ
λ′(y)Bλ′

0 (y), (2.17)

with the same transformation for D. The permittivity and permeability are contravariant tensor
densities of weight one that transform as

ελν(x) = (�(y))−1 Aλ
λ′(y)Aν

ν ′(y)ελ′ν ′
0 , (2.18)

with the same transformation for μλν . Maxwell equations (2.1)–(2.4) are the same as in
both spaces � and �0. Let us denote by ελν, μλν, ε0λν, μ0λν , respectively, the inverses of the
corresponding permittivity and permeability. They are covariant tensor densities of weight
minus one that transform as

ελν(x) = �(y)Aλ′
λ (y)Aν ′

ν (y)ε0λ′ν ′ , μλν(x) = �(y)Aλ′
λ (y)Aν ′

ν (y)μ0λ′ν ′ . (2.19)

We have that

det ελν = �−1 det ελν
0 , det μλν = �−1 det μλν

0 , (2.20)

det ελν = � det ε0λν, det μλν = � det μ0λν. (2.21)

The matrices ελν, μλν are degenerate at ∂K and the matrices ελν, μλν are singular at ∂K .
As the ελν and μλν are degenerate at the boundary of the cloaked object K, we have to

make precise what do we mean by a solution to Maxwell equations in neighborhood of ∂K .
In other words, we have to specify the cloaking boundary conditions that the solutions have
to satisfy on the outside and inside of ∂K . We solved this problem in [4, 5] by requiring
that the fundamental principle of energy conservation be satisfied. That is to say, we obtained
the appropriate boundary conditions by requiring that the solutions conserve energy. Note
that as our media are loss-less energy has to be conserved. Furthermore, any energy loss of
the incoming waves could a priori be detected, and, in consequence, energy conservation is
essential for cloaking purposes. We briefly review the results of [4, 5].

We first consider the problem in �. We write Maxwell equations in Schrödinger form. For
this purpose we denote by ε and μ, respectively, the matrices with entries ελν and μλν . Recall
that (∇ × E)λ = sλνρ ∂

∂xν
Eρ , where sλνρ is the permutation contravariant pseudo-density of

weight −1 (see section 6 of chapter II of [23], where a different notation is used).
We define the following formal differential operator:

a�

(
E

H

)
= i

(
ε∇ × H

−μ∇ × E

)
. (2.22)

Here, as usual, we denote ε∇ × H := ελν(∇ × H)ν and μ∇ × E = μλν(∇ × E)ν .
Equation (2.1) is equivalent to

i
∂

∂t

(
E

H

)
= a�

(
E

H

)
, (2.23)

and equation (2.3) is equivalent to

−ω

(
E

H

)
= a�

(
E

H

)
. (2.24)

Note that since the matrices ε, μ are singular at ∂� the operator a� has coefficients that are
singular at ∂�. This is the reason why we have to be careful when defining the solutions.

8
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It is necessary to define equation (2.22) in an appropriate linear subspace of the Hilbert
space of all finite-energy fields in �. We designate by H�E the Hilbert space of all measurable,
C3-valued functions defined on � that are square integrable with the weight ελν and the scalar
product

(E(1), E(2))�E :=
∫

�

E
(1)
λ ελνE

(2)
ν dx3. (2.25)

Moreover, we denote by H�H the Hilbert space of all measurable, C3-valued functions defined
on � that are square integrable with the weight μλν and the scalar product

(H(1), H(2))�H :=
∫

�

H
(1)
λ μλνH

(2)
ν dx3. (2.26)

The Hilbert space of finite-energy fields in � is the direct sum

H� := H�E ⊕ H�H . (2.27)

We first define a� in a nice set of functions where it makes sense, which we take as C1
0(�). In

physical terms this means that we start with the minimal assumption that Maxwell’s equations
are satisfied in classical sense away from the boundary of �. a� with domain D(a�) := C1

0(�)

is a symmetric operator in H�, i.e. a� ⊂ a∗
�. To construct a unitary dynamics that preserves

energy we have to analyze the self-adjoint extensions of a�, what in physical terms means
that we have to make precise in what sense Maxwell’s equations are solved up to ∂�. In
other words, to construct finite-energy solutions of (2.23), with constant energy we have to
demand that the initial finite-energy fields (E(0), H(0))T belong to the domain of one of the
self-adjoint extensions of a�. The key issue is that a� has only one self-adjoint extension (i.e.
it is essentially self-adjoint) that we denote by A�. Moreover, A� is unitarily equivalent to
the free Maxwell propagator, A0, in �0. The unitary equivalence is generated by (2.16) and
by the same transformation for the magnetic field. This means that there is only one dynamics
in � that preserves energy, and that this dynamics is generated by A�. As A� and A0 are
unitarily equivalent, the dynamics that they generate are physically equivalent, and this is the
deep reason, from the point of view of fundamental physics, why there is perfect cloaking of
passive and active devices.

Solutions to (2.3), (2.4) in general do not have finite energy because they do not have
enough decay at infinity to be square integrable over all �. Then, we only require that they are
of locally finite energy in the sense that the electric and the magnetic fields are square integrable
over every bounded subset of �, respectively, with the weights ελν and μλμ. Moreover, in
order that the problem (2.3), (2.4) is well-posed—in the sense that it is self-adjoint—the
solutions with locally finite energy have to be locally in the domain of the only self-adjoint
extension of a�, that is to say, they have to be in the domain of A� when multiplied by any
continuously differentiable function with support in a bounded subset of �.

On the basis of these considerations we proved in [4, 5] that the solutions with locally
finite energy in � are solutions in distribution sense to (2.3), (2.4) that satisfy∫

O

Eλε
λνEν dx3 +

∫
O

Hλμ
λνHν dx3 < ∞, (2.28)

for every bounded set O ⊂ �. Moreover, they have to satisfy the cloaking boundary condition

E × n = 0, H × n = 0, in ∂� = ∂K+, (2.29)

where ∂K+ is the outside of the boundary of the cloaked object and n is the normal vector to
∂K+.

Note that as A� is the only self-adjoint extension of a�, this is the only possible self-
adjoint boundary condition on ∂K+. It is self-adjoint because the matrices ε, μ are singular at
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∂K+. Hence, cloaking as boundary value problem consists of finding a solution to (2.3), (2.4)
in � with locally finite energy that satisfies the cloaking boundary condition given in (2.29).

Let us now consider the propagation of electromagnetic waves inside the cloaked object.
We assume that in each Kj the permittivity and the permeability are given by ελν

j , μλν
j , with

inverses εjλν, μjλν and where εj , μj are the matrices with entries εjλν, μjλν . Furthermore, we
assume that 0 < ελν

j (x), μλν
j (x) � C, x ∈ Kj and that for any compact set Q contained in the

interior of Kj there is a positive constant CQ such that det ελν
j (x) > CQ, det μλν

j (x) > CQ, x ∈
Q, j = 1, 2, . . . , N . In other words, we only allow for possible singularities of εj , μj on the
boundary of Kj .

We designate by HjE the Hilbert space of all measurable, C3-valued functions defined on
Kj that are square integrable with the weight ελν

j and the scalar product

(
E

(1)
j , E

(2)
j

)
jE

:=
∫

Kj

E
(1)
jλ ελν

j E
(2)
jν dx3. (2.30)

Similarly, we denote by HjH the Hilbert space of all measurable, C3-valued functions
defined on Kj that are square integrable with the weight μλν

j and the scalar product

(
H

(1)
j , H

(2)
j

)
jH

:=
∫

Kj

H
(1)
jλ μλν

j H
(2)
jν dx3. (2.31)

The Hilbert space of finite-energy fields in Kj is the direct sum

Hj := HjE ⊕ HjH , (2.32)

and the Hilbert space of finite-energy fields in the cloaked object K is the direct sum,

HK := ⊕N
j=1Hj .

The complete Hilbert space of finite-energy fields including the cloaked object is

H := H� ⊕ HK. (2.33)

We now write (2.1) as a Schrödinger equation in each Kj as before. We define the
following formal differential operator:

aj

(
Ej

Hj

)
= i

(
εj∇ × Hj

−μj∇ × Ej

)
. (2.34)

Equation (2.1) in Kj is equivalent to

i
∂

∂t

(
Ej

Hj

)
= aj

(
Ej

Hj

)
. (2.35)

Let us denote the interior of Kj by
o

Kj := Kj\∂Kj . Then, aj with domain C1
0(

o

Kj ) is a
symmetric operator in Hj . We denote

a := a� ⊕ aK, where aK := ⊕N
j=1aj , (2.36)

with domain

D(a) :=
{(

E�

H�

)
⊕N

j=1

(
Ej

Hj

)
∈ C1

0(�) ⊕N
j=1 C1

0(
o

Kj )

}
. (2.37)

The operator a is symmetric in H. The possible unitary dynamics that preserve energy for the
whole system, including the cloaked object, K, are given by the self-adjoint extensions of a.
We proved in [4, 5] that every self-adjoint extension, A, of a is the direct sum of A� and of
some self-adjoint extension, AK , of aK , i.e.,

A = A� ⊕ AK. (2.38)

10
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This result implies that the cloaked object K and the exterior � are completely decoupled. That
electromagnetic waves outside K cannot go inside and vice versa, that waves inside cannot
propagate outside and that there is perfect cloaking of passive and active devices. Choosing a
particular self-adjoint extension AK amounts to fixing a boundary condition in the inside of
the boundary of the cloked object, ∂K−. The self-adjoint extension, or boundary condition,
that nature will take depends on the properties of the media inside the cloaked object. Note
that this does not mean that we have to put any physical surface, a lining, on the surface of the
cloaked object to enforce any particular boundary condition on the inside, since this plays no
role in the cloaking outside. It is, however, of importance to determine what the self-adjoint
extension in K, or the interior boundary condition, has to be for specific cloaked objects. See
[4, 5] for a detailed discussion of these issues.

The problem that we address in this paper is to determine what the boundary conditions
in ∂K− have to be in the particular case where the permittivity and the permeability in K are
bounded and non-degenerate, i.e., when the matrices ελν

j , μλν
j are bounded above and below

in Kj ,

0 < C1 < ελν
j , μλν

j < C2, x ∈ Kj, j = 1, 2, . . . , N, (2.39)

for some positive constants C1, C2. This is clearly the most important case in the applications.
It corresponds to a standard object that is cloaked with a metamaterial.

Let us consider the case of an active device with electric and magnetic currents in K. The
Maxwell equations at frequency ω are

∇ × H = iωD + J, (2.40)

∇ × E = −iωB − Jm, (2.41)

where J and Jm are, respectively, the electric and the magnetic currents that we assume are
different from zero only in K.

As we mentioned above, we have already proven in [4, 5] that energy conservation
implies that the electromagnetic waves inside K cannot propagate outside and that, vice versa,
the waves outside cannot go inside. The key issue here is that this is consistent with Maxwell
equation (2.40) only if the normal component of the total current (i.e. the sum of the
displacement current and the electric current) vanishes at ∂K−, i.e., if

(iωD + J ) · n|∂K− = 0, (2.42)

where as usual by ∂K− we mean that we approach the boundary from the inside. In a similar
way, the consistency with Maxwell equation (2.41) implies that

(iωB + Jm) · n|∂K− = 0. (2.43)

Note that we do not need to ask that (2.42), (2.43) hold at ∂K+ because as we assume
that J, Jm are identically zero outside K conditions (2.42), (2.43) in ∂K+ follow from
equations (2.14), (2.15), (2.17) and the same transformation equation for D, since the solution
in � is obtained applying the transformation formulae to a solution in R3

0 [4, 5]. Moreover,
the boundary conditions (2.42), (2.43) on ∂K− and Maxwell equations (2.40), (2.41) imply
that

(∇ × H) · n|∂K− = 0, (∇ × E) · n|∂K− = 0. (2.44)

Hence, we have proven that the boundary conditions that we have to impose on the inside
of the boundary of the cloaked object are (2.44), namely that the normal components of
the curl of the electric and the magnetic fields have to vanish. The Maxwell propagator aK

with the boundary condition (2.44) has already been studied in the mathematical literature,
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in particular in relation with Beltrami fields. As it was to be expected from our analysis, aK

with the boundary condition (2.44) is a self-adjoint operator. In other words, the boundary
condition (2.44) defines the self-adjoint realization, AK , of the Maxwell propagator in K that
is imposed by energy conservation. For the proof of self-adjointness, as well as other issues,
including the formulation of (2.44) in weak sense see [24–27], in particular, see page 158,
theorem 2.1, corollary 2.1.1, page 164 and theorem 2.3 of [26]. Note that in our case the
Neumann fields are zero. Remark that imposing that the normal components of D and B are
zero at ∂K− is not a self-adjoint boundary condition, i.e., it does not define a self-adjoint
extension of Maxwell generator in K.

We have now a complete formulation of cloaking as a boundary value problem. It consists
of finding a solution of Maxwell equations (2.40), (2.41) in distribution sense in R3\∂K , with
locally finite energy, i.e., they satisfy∫

O

Eλε
λνEν dx3 +

∫
O

Hλμ
λνHν dx3 < ∞, (2.45)

where O is any bounded subset of R3. Moreover, they have to satisfy the cloaking boundary
conditions

E × n = 0, H × n = 0, at ∂� = ∂K+, (2.46)

and

(∇ × E) · n = 0, (∇ × H) · n = 0, at ∂K−. (2.47)

We have derived the boundary conditions (2.46), (2.47) by requiring that the solutions
to the fixed frequency Maxwell equations (2.40), (2.41) are (locally) in the domain of the
appropriate self-adjoint extension (2.38) of Maxwell generator (2.36). Note that when we
define the self-adjoint operator AK we have to require that all functions on its domain satisfy
the boundary conditions (2.47), not just the solutions to the fixed frequency Maxwell equations.
In fact, the choice of the self-adjoint Maxwell generator AK has implications that go well
beyond the formulation of cloaking as a boundary value problem. For example, it determines
the time evolution of finite-energy wave packets in the time domain (see [4, 5] for this
issue).

3. The case of a radial source at the boundary of K

In this section, we illustrate our method by considering an active device given by a radial
electric current at the boundary of K. The case of a magnetic current at the boundary of K
follows in the same way. We assume that K is isotropic and spherically stratified, i.e., that
the permittivity and the permeability depend only on |x|. The case where K is isotropic
and homogeneous, and with an electric dipole contained in the interior of K was already
considered in [14]. We verify in this particular case, by an explicit computation, that our
cloaking boundary conditions are satisfied and that cloaking of active devices holds, even if
the current is at the boundary of the cloaked object, as we have proven in section 2 in the
general case where there is no explicit solution.

We assume that we have only one spherical cloak, K, located at the origin, i.e.,
N = 1, c1 = 0, that K is isotropic with permittivity and permeability, ε1, μ1, that are bounded,
that they have a positive lower bound and that they depend only on r := |x|. For simplicity
we take a first-order transformation with g(ρ) = b−a

b
ρ + a, 0 < a < b. In the cloaking layer

the permittivity and the permeability tensors are given by [1, 16]

ελν = εr x̂λx̂ν + εt θ̂
λθ̂ ν + εt ϕ̂

λϕ̂ν, μλν = μr x̂λx̂ν + μt θ̂
λθ̂ ν + μt ϕ̂

λϕ̂ν, a < |x| < b,

(3.1)

12
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where θ̂ , ϕ̂ are unit tangent vectors, respectively, to the coordinate lines r, ϕ constant and r, θ

constant, in spherical coordinates r, θ, ϕ. Moreover,

εt/ε0 = μt/μ0 = b/(b − a), εr/εt = μr/μt = (r − a)2/r2, a < r < b. (3.2)

We assume that for r > b the medium is homogeneous and isotropic with permittivity and
permeability, ε0, μ0.

The expression of the transverse electric (TE) and transverse magnetic (TM) fields in
terms of potentials given in section 8.6 of [8] remains true in our case (remark the εt and μt

are constant in the cloaking layer) (see also [13, 14]). TE and TM fields decouple, and since
we have a radial electric current we only consider TM modes. Assuming that J = Jr(r)x̂ and
that Jm = 0, the TM fields are given by the potential as follows [8]:

Et = −i

ωεtr
gradθϕ

d

dr
I,

Ht = 1

r
(gradθϕI × x̂),

Er = − 1

iωεrr2
�θϕI − 1

iωεr

Jr .

(3.3)

We expand the potential in spherical harmonics

I =
∑
mn

I (r)mnY
m
n (θ, ϕ),

and we assume that the radial current has the following expansion:

Jr =
∑
mn

Jmnδ(r − a)Ym
n (θ, ϕ),

for some constants Jmn. For example, for an electric dipole located at (0, 0, a) we have that

Jmn = − iωPe

2πa2

√
2n+1
4π

δm,0 [8].
We now set the inner boundary at a + δ, for small δ > 0, i.e., we assume that the

permittivity and permeability are equal to ε1, μ1 for r < a + δ, that they are given by (3.1),
(3.2) for a + δ < r < b and by ε0, μ0 for r > b. We compute the solution, and then we take
the limit as δ tends to zero [19].

For 0 < r < a+δ, the potential Ia,mn created by the source satisfies the following equation
[8], where we denote d

dr
by ′,

I ′′
a,mn − 1

ε1
ε′

1I
′
a,mn +

[
ω2ε1μ1 − n(n + 1)

r2

]
Ia,mn = −Jmnδ(r − a). (3.4)

Let vn and wn to be independent solutions of the homogeneous equation with vn regular at
zero. For example, if ε1(r), μ1(r) are piecewise constant, vn can be taken as a Ricatti–Bessel
function of the first kind and wn as a Ricatti–Bessel function of the second or third kind [9] in
each layer where ε1, μ1 are constant. Hence, the solution to (3.4) is given by

Ia,mn(r) = Jmn

v′
n(a)wn(a) − vn(a)w′

n(a)

{
wn(a)vn(r), 0 < r < a,

vn(a)wn(r), a < r < a + δ.
(3.5)

We suppose that vn(a) and wn(a) are different from zero. We assume that there is also a
reflected wave. Then, the total potential is given by

Imn = Ia,mn(r) + Rmnvn(r), 0 < r < a + δ, (3.6)

13
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where the Rmn are the reflection coefficients. In the cloaking layer the potential satisfies the
equation (remark that εt , μt are constant)

I ′′
mn +

[
ω2εtμt − εt

εr

n(n + 1)

r2

]
Imn = 0, a + δ < r < b. (3.7)

The solution is given by Ricatti–Bessel functions of the first and second kind,

Imn(r) = cmnψn(kt (r − a)) + dmnχn(kt (r − a)), kt := ω
√

εtμt , a + δ < r < b.

(3.8)

Outside of the cloaking layer the potential satisfies equation (3.7) with εt = εr = ε0 and
μt = μ0. The solution is an outgoing wave,

Imn(r) = Tmnζn(k0r), k0 := ω
√

ε0μ0, b < r, (3.9)

where ζ is a Ricatti–Bessel function of the third kind.
Requiring that the tangential components of the electric and the magnetic fields are

continuous at a + δ and b we obtain the following equations:

1

ε1(a + δ)
(I ′

a,mn(a + δ) + Rmnv
′
n(a + δ)) = kt

εt

(cmnψ
′
n(kt δ) + dmnχ

′
n(kt δ)), (3.10)

Ia,mn(a + δ) + Rmnvn(a + δ) = cmnψn(kt δ) + dmnχn(kt δ), (3.11)

kt

εt

(
cmnψ

′
n(kt (b − a)) + dmnχ

′
n(kt (b − a)

) = k0

ε0
Tmnζ

′
n(k0b), (3.12)

cmnψn(kt (b − a)) + dmnχn(kt (b − a)) = Tmnζn(k0b). (3.13)

Let us denote

α :=
(

μtε0

μ0εt

)1/2

, (3.14)

β1 := ζ ′
n(k0b)χn(kt (b − a)) − αζn(k0b)χ ′

n(kt (b − a)), (3.15)

β2 := ζ ′
n(k0b)ψn(kt (b − a)) − αζn(k0b)ψ ′

n(kt (b − a)), β3 := −β1

β2
, (3.16)

β4 := v′
n(a + δ)(β3ψn(ktδ) + χn(ktδ)) − ktε1(a + δ)

εt

vn(a + δ)(β3ψ
′
n(kt δ) + χ ′

n(kt δ)). (3.17)

Solving (3.10)–(3.13) in the generic case where β2 �= 0 we obtain that

Rmn = 1

vn(a + δ)
((β3ψn(ktδ) + χn(ktδ))dmn − Ia,mn(a + δ)), (3.18)

cmn = β3dmn, (3.19)

dmn = Jmnvn(a)
1

β4
, (3.20)

Tmn = 1

ζn(k0b)
(β3ψn(kt (b − a)) + χn(kt (b − a))dmn. (3.21)

Using the expansions of the spherical Bessel functions for small argument given in
equations (10.1.2), (10.1.3) of [28] we prove that

dmn = −Jmn

vn(a)εt

kt ε1(a + δ)vn(a + δ)n(2n − 1)!!
(kt δ)

n+1 + O((ktδ)
n+2). (3.22)
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Using (3.22) we obtain the small δ expansions of Rmn, cmn, Tmn, respectively, from (3.18),
(3.19), (3.21),

Rmn = 1

vn(a + δ)
(−Ia,mn(a + δ) + O(ktδ), (3.23)

cmn = β3

(
−Jmn

vn(a)εt

kt ε1(a + δ)vn(a + δ)n(2n − 1)!!
(kt δ)

n+1 + O((ktδ)
n+2)

)
, (3.24)

Tmn = −Jmnvn(a)εt (β3ψn(kt (b − a)) + χn(kt (b − a))

ktε1(a + δ)ζn(k0b)vn(a + δ)n(2n − 1)!!
(kt δ)

n+1 + O((ktδ)
n+2). (3.25)

Moreover, by (3.6), (3.11), (3.22), (3.24),

Imn(a + δ) = Jmn

vn(a)εt

vn(a + δ)nktε1(a + δ)
kt δ + O((ktδ)

2). (3.26)

It follows that when δ = 0, cmn = dmn = Tmn = 0, and the electric and magnetic fields outside
K are zero, as predicted by our theoretical results. Also, for δ = 0, Imn(a) = 0, and then
by equation (3.3) the radial component of sum of the displacement current and the electric
current vanishes at r = a. By Maxwell equation (2.40) the normal component of the curl of
the magnetic field vanishes ar r = a. The corresponding statement for the normal component
of the curl of the electric field is trivial in this case by Maxwell equation (2.41) and as the
magnetic field is transversal and the magnetic current is zero. Hence, the boundary conditions
(2.44) are satisfied and cloaking holds even if the current is at the boundary of K, as predicted
by our theoretical results.

4. Conclusions

The results of this paper and of [4, 5] give a complete rigorous mathematical analysis of
point transformed electromagnetic invisibility cloaks. We solved the mathematical challenges
posed by the fact that the permittivity and the permeability are degenerate at the boundary of
the cloaked object K. In particular, we characterized all possible ways to define solutions of
Maxwell equations that are compatible with energy conservation. This result was obtained
by characterizing all possible boundary conditions at ∂K± that are allowed by energy
conservation. They correspond to all self-adjoint extensions of the Maxwell generator. As
it turned out, all self-adjoint extensions are the direct sum of some self-adjoint extension
inside K with a fixed self-adjoint extension outside K. This implies that the solutions inside
and outside of K are completely decoupled from each other and that, in general, they are
discontinuous at ∂K . We also proved that cloaking of passive and active devices always holds
for all possible ways to define solutions that satisfy energy conservation, i.e., with self-adjoint
boundary conditions. The boundary condition at ∂K+ is always that the tangential components
of both the electric and the magnetic field vanish. At ∂K− the boundary condition can be any
self-adjoint boundary condition for the Maxwell generator in K. The particular self-adjoint
boundary condition that nature will take depends on the specific properties of the media inside
K. In this paper, we solved the problem of determining the appropriate boundary conditions
at ∂K− in the case where the permittivity and the permeability inside K are bounded and have
a positive lower bound. This corresponds to the situation where we have a standard object
K—that could be anisotropic and inhomogeneous, but whose permittivity and permeability are
neither singular nor degenerate—that is coated by a transformation medium that is degenerate
at ∂K+. We also allow for passive and active devices in K. This is perhaps the more important
case in the applications.
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In this way, we have obtained a complete formulation of cloaking with passive and
active devices as a boundary value problem. It consists of finding a solution of Maxwell
equations (2.40), (2.41) at frequency ω, in distribution sense in R3\∂K , with locally finite
energy, i.e., they satisfy∫

O

Eλε
λνEν dx3 +

∫
O

Hλμ
λνHν dx3 < ∞,

where O is any bounded subset of R3. Moreover, they have to satisfy the following cloaking
boundary conditions:

E × n = 0, H × n = 0, at ∂K+ (4.1)

and

(∇ × E) · n = 0, (∇ × H) · n = 0, at ∂K−. (4.2)

In the case of one spherical cloaked object, that is isotropic and spherically stratified, and
that has an active device given by a radial electric current at the boundary, we verified by an
explicit computation that our cloaking boundary conditions are satisfied and that cloaking of
active devices holds, even if the current is at the boundary of the cloaked object.

A novel aspect of our work is that we proved our results for transformations media that
are obtained from general anisotropic media, i.e., that it is not necessary to transform from
isotropic media. This means that it is possible to cloak objects that are contained inside general
anisotropic materials, general crystals for example. For this purpose, we just have to take as
the permittivity and the permeability of the general anisotropic medium before transformation
those of the general anisotropic material, or the general crystal, which contains the object that
we wish to cloak. The fact that it is possible to cloak objects inside general anisotropic media
opens the way to other interesting potential applications, for example to guide electromagnetic
waves under quite general circumstances.

The results above—that are proven for cloaks in exact transformation media (ideal
cloaks)—set the stage for the rigorous study of the cloaks in the approximate transformation
media that one has to consider in practical situations, what is one of the main open questions
in this area. This issue can be understood as the problem of the stability of cloaking under the
perturbation on the permittivity and the permeability given by the difference in the permittivity
and the permeability between the exact and the approximate transformation media. Our
formulation of cloaking as a self-adjoint problem shows that the important issue of stability
of cloaking can be formulated as a problem in perturbation theory of the self-adjoint Maxwell
generator. Perturbation theory of self-adjoint operators is a main stream topic in modern
mathematical physics and there is a large body of results (see, for example, [29]). Our analysis
opens the way to a rigorous study of the stability of cloaking along these lines.

For exact transformation media the boundary conditions (4.1), (4.2) are satisfied because
they follow from energy conservation and there is no need to add any lining to impose
them. However, our results suggest a method to enhance cloaking in the approximate
transformation media that are used in practice. Namely, to coat ∂K by a material that
imposes the boundary conditions (4.1), (4.2). As these boundary conditions have to be
satisfied for exact transformation media, adding a lining that enforces them in the case of
approximate transformation media will improve the performance of approximate cloaks.
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